Особенности применения торцовочных станков

Особенности применения торцовок


Принцип действия торцовочного станка

Принцип действия заключается в делении заготовки плоскостью, перпендикулярной ее волокнам. В качестве инструмента в основном используется дисковая пила. Так формируется торец деталей из древесины. Строго говоря, плоскость резания может располагаться и не под прямым углом к волокнам. И некоторые модели станков поддерживают такой смешанный продольно-поперечный режим резания.

Существуют и системы, использующие ленточные пилы для раскроя пиломатериала, а также ножи для резки рейки, штапика или шпона.

Торцовочные станки используют в двух случаях: для формообразования торца детали и при вырезке дефектных мест. Заготовка последовательно проходит несколько этапов. Первоначально ее перемещают до достижения требуемого положения относительно инструмента. Затем происходит фиксация и собственно пиление. И только после отвода прижимов полученные детали извлекают из зоны обработки. Очень часто встречается компоновка, в котором положение определяется устанавливаемым упором-флажком.

Предлагается анализ наиболее типичных элементов конструкции торцовочных станков.

Элементы конструкции торцовочного станка

Основным элементом торцовочного станка без преувеличения является пильный узел. Дело в том, что качество получаемой поверхности в основном зависит от работы именно этого конструктивного блока. В нем используются, например, дисковые пилы со специальной формой зубьев, с дополнительными строгальными ножами, «зачищающими» торец детали. Из-за того, что древесина обладает выраженной анизотропией — физико‑механическими свойствами, зависящими от выбранного сечения — процесс резания протекает по-разному в продольном и поперечном условных направлениях. В частности, волокна при поперечном раскрое практически не деформируются, что исключает «зажим» инструмента. Поэтому нет необходимости в использовании расклинивающих ножей. С другой стороны, поперечный распил часто сопровождается сколами и отрывом волокон по периферии торца. Применение антискольных устройств по аналогии с фрезерными станками малоэффективно — прорезь в подложке из древесины при многократных проходах пилы быстро расширяется. Основным методом борьбы с такого рода дефектами остается высокая скорость резания качественным, заточенным инструментом.

За разгон и соответствующую частоту вращения пилы отвечает главный привод. В торцовочных станках используются и высокомоментные асинхронные двигатели с роторами-шпинделями, и ременные многоступенчатые передачи, а также высокоскоростные приводы постоянного тока, способные развивать скорость, например в настольных станках, до 5−6 тыс. об/мин. В среднем, для торцовки заготовки сечением 400×100 мм достаточна мощность двигателя 3−4 кВт.

Помимо вращения, пильный узел должен перемещаться относительно заготовки во время резания. Конструкции механизма его подачи — самые разнообразные.

Качающийся маятниковый рычаг. Шарниры делают его износостойким и долговечным. Малый ход перемещения предопределяет высокое быстродействие станка в целом.

Маятник приводится в движение гидравлическим или пневматическим цилиндром. Диаметр пилы D пилы накладывает ограничение на ширину распиливаемой заготовки, которая зависит еще и от ее высоты: при высоте заготовки h2 ширина b1, а при h1 — b2 соответственно. При диаметре пилы 400 мм среднее сечение заготовки будет в пределах 200 х 100 мм (станок СТБ-002). При нижнем расположении пильного узла (пила находится под заготовкой) требуется обязательный принудительный прижим торцуемой детали. Конструкция качающегося маятникового рычага широко используется в большинстве известных системах оптимизированного раскроя древесины.

Рычажной механизм. Пила двигается как от пневмоцилиндра, так и от усилия оператора. Причем в ручном исполнении при подаче используется потенциальная энергия массивного рычага, а при возвратном ходе — ресурс сжатой пружины. Кроме того, принципиальная схема механизма исключает самопроизвольный подъем пилы, а сила резания дополнительно прижимает и фиксирует заготовку к базовой плоскости. Таким рычажным механизмом оснащались популярные в прошлом столетии станки серии ЦМЭ. При диаметре пилы 500 мм максимальный размер сечения составляет 400×100 мм.

Линейная направляющая пильного узла ограничивает ширину заготовки только собственной длиной. Так, в модели СТ 400 ход пильного суппорта достигает 530 мм. Чтобы устройство двигалось в одном направлении — направлении подачи пилы, суппорт имеет несколько типов роликов. Да и форма самой направляющей достаточно сложная. Она подвержена интенсивному износу, воздействию контактных и изгибных нагрузок, так как имеет консольную форму.

Поэтому качественные станки с таким видом направляющей должны состоять из деталей, прошедших соответствующую термическую обработку, с высокоточной механикой. Привод подачи в основном пневматический или гидравлический. Нижнее расположение пилы более безопасное, так как инструмент полностью закрыт в корпусе станка. Особая конструкция суппорта позволяет производить распил под углом в двух плоскостях, что существенно расширяет диапазон возможностей оборудования, но инструмент при этом должен быть закрыт раздвижным ограждением.

При длине распила свыше 500 мм используется цепной привод подачи. Спрос на такие торцовочные станки связан с их использованием в линиях по производству мебельного щита, на участках подрезки торца. Здесь же необходимо отметить, что в низкотемпературных условиях эксплуатации, при работе с заготовками высотой свыше 100 мм, гидравлический привод более предпочтителен.

Как правило, прижим заготовки конструктивно совмещен с еще одним важным элементом станка — защитным кожухом. Вопросы безопасности эксплуатации торцовочных станков настолько важны, что требуют к себе особого внимания. Учитывая, что время выхода пилы из стола менее 1 сек., а количество циклов за смену исчисляется десятками тысяч, необходимо четко представлять, какая должна быть степень защиты действующих систем безопасности, особенно при ручном режиме работы. Торцовочные станки должны иметь исправную электроавтоматику, блокирующую вращение пилы в случае возникновения нештатной ситуации.

Существуют торцовочные станки, в которых положение пилы фиксировано во время торцевания заготовки. Заготовка в этом случае устанавливается на подвижную каретку. Это удобно при мелкосерийном производстве, скажем, мебельной заготовки, когда возникает необходимость последовательной обработки торца, кромки, а также косоугольных деталей. Поворотная линейка на каретке в таком случая — нужное дополнение. А эксцентриковый прижим заготовки повысит быстродействие и безопасность работы станка. Ярким примером реализации такой схемы служат станки серии Ц, комплектуемые каретками для указанных целей. Такие универсальные «циркулярки» нашли свое место практически в каждом деревообрабатывающем цехе.

Другая область применения торцовочных станков такого типа — линии сращивания бруса по длине. Как известно, в них на специальную каретку укладываются сразу 5−10 заготовок, они фиксируются с помощью пневмоприжимов и торцуются. Это необходимо для эффективной работы следующего по ходу каретки фрезерного блока. Срезаемый пилой припуск 5−10 мм может стать губительным для фрезы и снизить качество получаемого микрошипа. Для лучшей утилизации отходов отпиливаемая часть заготовки дробится специальным инструментом — дробилкой, установленной за пилой на одном с ней шпинделе так, что система в целом хорошо адаптируется в массовое поточное производство.

В условиях непрерывности подачи заготовки, станки подразделяются на позиционные и системы проходного типа.

Заготовка укладывается на непрерывно работающий конвейер и безостановочно подается к пильным узлам. Наличие второй или даже третьей пилы позволяет получать детали определенной длины, зависящей только от устанавливаемого расстояния между пильными блоками. Такие системы более производительные так как не имеют фазы остановки или выставления детали в циклограмме работы. Синхронное вращение нескольких транспортеров и расположенных на них упорах гарантируют перпендикулярность получаемого торца и кромки доски. Специальный механизм позволяет перемещать подвижный пильный узел на требуемое расстояние с помощью пульта и электропривода. Примером удачной конструкции можно считать турецкие станки проходного типа GBK-600, использующиеся в линиях по производству обрезной доски.

Остаются за рамками исследования такие аспекты, как виды околостаночного оборудования, являющегося неотъемлемой частью систем поперечного раскроя. Особенности его отдельных элементов рассматриваются в контексте вопросов целевого применения тех или иных торцовочных станков.

Торцовочный станок RTW5 01

Торцовочный станок RTW5 03

Торцовочный станок RTW5 05